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Abstract
Improved understanding of the sources of air pollution that are most harmful could aid in
developing more effective measures for protecting human health. The Denver Aerosol Sources
and Health (DASH) study was designed to identify the sources of ambient fine particulate matter
(PM2.5) that are most responsible for the adverse health effects of short-term exposure to PM 2.5.
Daily 24-hour PM2.5 sampling began in July 2002 at a residential monitoring site in Denver,
Colorado, using both Teflon and quartz filter samplers. Sampling is planned to continue through
2008. Chemical speciation is being carried out for mass, inorganic ionic compounds (sulfate,
nitrate and ammonium), and carbonaceous components, including elemental carbon, organic
carbon, temperature-resolved organic carbon fractions and a large array of organic compounds. In
addition, water soluble metals were measured daily for 12 months in 2003. A receptor-based
source apportionment approach utilizing positive matrix factorization (PMF) will be used to
identify PM 2.5 source contributions for each 24-hour period. Based on a preliminary assessment
using synthetic data, the proposed source apportionment should be able to identify many important
sources on a daily basis, including secondary ammonium nitrate and ammonium sulfate, diesel
vehicle exhaust, road dust, wood combustion and vegetative debris. Meat cooking, gasoline
vehicle exhaust and natural gas combustion were more challenging for PMF to accurately identify
due to high detection limits for certain organic molecular marker compounds. Measurements of
these compounds are being improved and supplemented with additional organic molecular marker
compounds. The health study will investigate associations between daily source contributions and
an array of health endpoints, including daily mortality and hospitalizations and measures of
asthma control in asthmatic children. Findings from the DASH study, in addition to being of
interest to policymakers, by identifying harmful PM2.5 sources may provide insights into
mechanisms of PM effect.
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1. Introduction
Findings from observational epidemiology studies on the adverse health effects of ambient
particulate matter (PM) and other pollutants indicate effects of short-term concentration
changes on mortality and morbidity (Dominici et al., 2003; Pope and Dockery, 2006). As a
surrogate for exposure, these studies have primarily relied on outdoor PM mass
concentrations measured at one or more monitoring sites distributed over large urban areas.
An important finding in recent observational studies is that there appears to be heterogeneity
between urban areas in the magnitude of the observed acute effect of particulate air pollution
(Samet et al., 2000; Dominici et al., 2003). The causes of this heterogeneity are not known.
The PM contribution from various sources, and hence the chemical composition of PM,
varies by location (US-EPA, 2004). If PM toxicity is dependent on its chemical
composition, variability of PM source contributions could be one explanation for the
heterogeneity of effects. Evaluating associations between source contributions and health
effects may thus provide insight into the heterogeneity between urban areas.

The National Research Council has stressed the need to understand the comparative toxicity
of PM from different sources and recommended the use of source apportionment methods
(NRC, 2004). To date, a limited number of air pollution health studies have used source
apportionment to investigate mortality effects (Laden et al., 2000; Mar et al., 2000, 2006;
Tsai, Apte and Daisey, 2000; Ito et al., 2006), as well as effects on hospitalizations
(Anderson et al., 2007) and emergency room visits (Schreuder et al., 2006; Sarnat et al.,
2008). The Denver Aerosol Sources and Health (DASH) study is designed to investigate
effects of exposure to sources of fine particulate matter (PM2.5) on an array of health
endpoints by incorporating detailed daily PM2.5 chemical speciation data and state-of-the-art
source apportionment into a health study.

Several options are available to identify the role of time-varying pollutant sources in the
context of a health study. Concentrations of specific source markers have been used for this
purpose (Laden et al., 2000), but valid markers for many sources of interest are not
available. Deterministic air quality models can estimate contributions of sources at specific
locations at 4 km or finer grid resolution (Held et al., 2005), but their ability to reproduce
short-term variations is limited, due in part to the lack of temporally resolved emissions
information (Marmur et al., 2006). Receptor-based source apportionment approaches use
PM component concentrations measured at a monitoring site to estimate site-specific source
contributions to PM concentrations. Receptor models have been used to help identify PM
sources in numerous geographical regions (Maykut et al., 2003; Hopke et al., 2003; Schauer
et al., 1996; Long et al., 2005; Lewis et al., 2003). These models either use a chemical mass
balance (CMB) approach, which requires detailed information about the chemical
composition of sources in a region, or use multivariate factor analysis methods, for example,
positive matrix factorization (PMF) or UNMIX, to identify sources based on the temporal
patterns among chemical components measured at the receptor(s). These multivariate
approaches have the advantage of not requiring prior information on static source profiles,
although source profile information is still needed to identify factors extracted from
multivariate methods and unambiguous factor identification is not always possible. An
important objective of the DASH study is to evaluate the utility of PMF for identifying
short-term pollution source contributions to the ambient PM2.5 in a large urban area.
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This paper provides an overview and introduction to the DASH study, focusing on the PM2.5
characterization methods used and the source apportionment techniques being employed.
Interim 4.5-year PM2.5 species concentrations are also presented. In addition, model
validation efforts using synthetic data are presented and discussed. Model uncertainty will
be explored using a novel method based on a bootstrap approach and neural networks
(Hemann et al., 2008). Companion papers describe in more detail the PM2.5 monitoring and
chemical analysis protocols, as well as the methodology for point-wise uncertainty
estimation (Dutton et al., 2008a, 2008b). Subsequent papers will detail results of PM2.5
species trends, source apportionment and epidemiological analyses.

2. Methods
2.1 PM2.5 Collection and Characterization

2.1.1 Core Receptor Site Monitoring—A residential site on the roof of Palmer
Elementary School located 5.3 km east of downtown Denver was selected as the receptor
site for detailed PM2.5 chemical speciation (Figure 1). This site was selected for its central
location in a large residential community and for its distance from point and mobile sources.
The school is 5.2 km from the closest large highway and at least 0.6 km from the closest
commuter street. Collection of daily 24-hour PM2.5 samples from this site has been ongoing
since July 1, 2002.

PM2.5 samples were collected daily from midnight to midnight on both Teflon and quartz
fiber filters with sampling equipment that has been used extensively in air quality studies in
the past (Lough, Schauer and Lawson, 2006; Christoforou et al., 2000). The sampling
protocol and the bulk chemical analysis methods briefly described below are presented in
more detail in Dutton et al., (2008a). A list of all species being analyzed is contained in
Table S1 in the online supplementary data.

2.1.2 Bulk Chemical Analyses—Bulk chemical speciation of all samples includes the
quantification of PM2.5 mass, inorganic ionic compounds (sulfate, nitrate, and ammonium),
elemental carbon (EC) and organic carbon (OC). Gravitational mass measurements are made
using a microbalance housed in a temperature and humidity controlled chamber with filter
weighing methods patterned after those approved by the EPA for PM2.5 mass determination
(US-EPA, 1998). Inorganic ionic compounds (sulfate, nitrate and ammonium) are quantified
using an ion chromatograph following traditional methodology for airborne particulate
matter (Mueller et al., 1978). Bulk EC and OC concentrations are determined by NIOSH
Method 5040; a 1.5 cm2 punch is taken from each quartz fiber filter and sent to the
Wisconsin State Laboratory of Hygiene for analysis.

2.1.3 Organic Compound Chemical Analysis—Methods for the detailed organic
chemical analysis of quartz fiber filter samples using solvent extraction and gas
chromatography/mass spectrometry (GC/MS) have been developed previously (Mazurek et
al., 1987; Fraser et al., 1996; Schauer et al., 1998; Hannigan et al., 1998) and similar
methods were used in this study. High volume injection (50 μl) was incorporated by way of
a programmable temperature vaporization inlet, thereby improving detection limits for trace
level organic compounds (Crimmins and Baker, 2006). Detailed description of the organic
speciation methods is included in Dutton et al. (2008b).

2.1.4 Quality Control and Uncertainty Estimation—Proper quality assurance and
quality control are essential for prevention of contamination and for ensuring consistent
chemical quantification. Consistency is especially important for a time series study. To
assess contamination, weekly field blank filters are collected, extracted, and analyzed
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following the same procedures used for the daily sample filters. The field blanks were used
to detect contamination coming from the filter substrates, handling or contaminated solvents
and supplies and were used to perform blank subtraction on the daily measurements to
adjust for these and other sampling artifacts.

To assure consistent and robust chemical quantification and to assist in uncertainty
estimation, bi-weekly duplicate samples were collected on collocated samplers. These
duplicate samples were analyzed in parallel with the main samples allowing for a direct
comparison of duplicated measurements over all chemical analyses performed. Consistent
and robust chemical quantification also involves instrument and equipment calibration,
which is achieved by routinely calibrating all chemical analysis equipment with authentic
standards. Complete details on quality control and uncertainty estimation are presented in
Dutton et al. (2008a).

2.1.5 Supplemental Monitoring Data—Speciation for trace metals was done for one
year on the 2003 filters. Water soluble trace metal chemical analysis was performed using an
Inductively-Coupled Plasma Mass Spectrometer (ICP/MS) housed in a dedicated laboratory
at the Wisconsin State Laboratory of Hygiene. Analytical details and results from this
supplemental analysis will be presented elsewhere.

In addition to the data collected at the DASH core receptor site, the Air Pollution Control
Division of the Colorado Department of Public Health and Environment (CDPHE) operates
and maintains a network of ambient pollutant monitoring stations for the Denver
metropolitan region. The network in this region consists of 14 community monitoring
stations providing hourly measurements of the following: PM10 at 3 sites, PM2.5 at 4 sites,
ozone at 9 sites, carbon monoxide at 6 sites, sulfur dioxide at 2 sites, nitrogen oxides at 2
sites, and meteorology at 11 sites. In addition to the hourly monitors, there are 7 PM10 and 6
PM2.5 sites collecting 24-hour samples and one Speciation Trends Network (STN) site
providing speciated PM2.5 measurements every 6th day for inorganic ions, total elemental
and organic carbon and trace metals. These data will be utilized in the PMF modeling effort.

2.2 PM2.5 Source Apportionment Model
PMF multivariate receptor modeling was chosen to evaluate the source contributions of the
time series of receptor samples. PMF incorporates uncertainty estimates of the data to solve
matrix factorization of a linear model as a constrained, weighted least-squares problem. For
this study, point-wise uncertainty estimates incorporating sampling uncertainty, detection
limits, missing data observations, and outliers are used to weight each data point. The least-
squares approach used in PMF also permits the inclusion of additional constraints as a key
part of the analysis, such as nonnegativity constraints.

2.2.1 The PMF Model—In the context of air quality source apportionment, PMF attempts
to apportion a matrix of observations, X, composed of individual observations xij (i=1…n,
j=1…m) into p distinct factors according to the model:

Equation 1

In Equation 1, gik represents the absolute contribution (μg/m3) of factor k to sample i, fkj
represents the relative fraction (μg/μg) of species j in factor k, and εij is the residual of the
model. The xij consist of measurements of m chemical components in n different samples.
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PMF solves Equation 1 by minimizing Q, the sum of the squared, scaled residuals, defined
by:

Equation 2

where sij is an estimate of the uncertainty in the measurement xij. A positivity constraint is
applied to gik and fkj, thus providing a more physically interpretable result. Written in matrix
notation, Equation 1 simplifies to:

Equation 3

where G is subsequently referred to as the factor contribution matrix and F the factor profile
matrix.

With some prior knowledge and experience, the PMF factors can often be linked to pollution
sources. Because source emissions are spatially and temporally variable, the factor profiles
should be interpreted as a qualitative guide to the types of sources to which people are
exposed and are qualitatively related to profiles published in the literature. The inclusion of
molecular markers unique to specific source types assists in identifying the association
between factor and source type.

2.2.2 PMF Model Validation—Similar to the PM2.5 characterization efforts, there is
substantial investment in exploring the quality and validity of the PMF results. One
approach to exploring the performance of a source apportionment model is to use synthetic
data (Miller et al., 2002; Brinkman et al., 2006). A synthetic data set was developed to
represent the PM2.5 data that were being gathered at the receptor site in Denver and analyzed
using the PMF2 algorithm (Paatero et al., 1997). The creation of the synthetic data set was
based on the methods employed in Brinkman et al. (2006); differences are highlighted.
Briefly, synthetic estimates of factor contributions (Gsyn) and factor profiles (Fsyn) for
several PM2.5 sources were created and combined into a synthetic observation matrix
Xsyn=GsynFsyn. One year of daily observations were simulated, comprised of 39 chemical
species from nine predefined sources (secondary ammonium nitrate and sulfate, gasoline
and diesel vehicle exhaust, road dust, wood combustion, meat cooking, natural gas
combustion and vegetative debris). These sources were chosen based on their importance for
the region as identified by the 1996–1997 Northern Front Range Air Quality Study
(NFRAQS) (Watson et al., 1998). Source profiles containing bulk species and organic
molecular markers were obtained from the literature as cited in Brinkman et al. (2006).
Limitations on the number of species included in the synthetic data set were imposed by
source profile availability; Table S2 in the online supplementary data identifies the 39
species included in the synthetic data exercise. Temporal patterns such as seasonality and
weekday/weekend differences were accounted for in the factor contributions. To incorporate
temporal correlations between the synthetic source contributions resulting from
meteorology, the source contributions representing secondary ammonium nitrate and
ammonium sulfate, wood combustion and natural gas combustion were scaled by
temperature. Further correlations between sources arose from the hypothesized temporal
patterns (e.g., gasoline and diesel powered motor vehicles, paved road dust, wood
combustion and meat cooking all contained a weekday/weekend dependence). Table S3 in
the online supplementary data shows the correlations between the synthetic source
contributions. Finally, the source contributions were scaled such that their daily sum added
up to the actual daily PM2.5 mass measured during 2003. Normally distributed random noise
was added to the synthetic observations xij based on measurement uncertainty, detection
limits and detection limit uncertainty associated with the analytical techniques typically used
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to speciate PM2.5 filter samples (Brinkman et al., 2006). The synthetic observations and
estimated measurement uncertainties were input into PMF, which in turn provided modeled
estimates of the factor contributions and profiles (Gpmf and Fpmf, respectively). These were
compared (see Results) with the known synthetic input matrices, Gsyn and Fsyn, to evaluate
the performance of the PMF model with this synthetic dataset.

2.2.3 PMF Model Uncertainty—There are several sources of uncertainty in a PMF
model solution that can affect the validity of the source estimates. One source of uncertainty
results from measurement error and random sampling error in the data. Uncertainty can also
come from the PMF model itself due to rotational ambiguity in the solutions. In addition,
solutions can vary depending on the values selected for model parameters including the
number of factors and the parameters used to control rotations and down-weighting of
outliers. As part of this study, Hemann et al. (2008) developed a novel method to estimate
daily factor contribution uncertainties that are due to random sampling error. A balanced
bootstrap technique will be used to create replicate datasets from the PM2.5 time series, each
of which will be modeled independently using PMF. Neural networks will be trained to
classify the replicate factors based upon chemical profiles so factor orderings can be aligned
across results associated with the replicate datasets. Factor contribution uncertainty will be
assessed from the distribution of contributions associated with each factor.

2.3 Health Endpoints
Only a brief overview of the health endpoints that will be included in the initial DASH
health analyses will be presented here. Endpoints include counts of daily mortality and daily
hospitalizations, and measures of asthma control in a panel of asthmatic school children.
Daily total and cause-specific mortality counts for 5-county metropolitan Denver are
obtained from the Colorado Health Information Dataset compiled by the CDPHE. Medicare
data on daily non-elective (i.e., emergency and urgent) hospitalizations for the population
age 65 years and older are obtained from the Medicare Provider Analysis and Review
(MedPAR) file and purchased from the Centers for Medicare and Medicaid Services (CMS;
formerly Hospital Care Financing Administration [HCFA]). Specific admission diagnoses of
interest will be respiratory hospitalization, including the subcategories of asthma and
chronic obstructive pulmonary disease, and cardiovascular hospitalization, including the
subcategories of myocardial infarction and congestive heart failure

An ongoing panel study of grade school children with asthma in Denver is used to provide
daily asthma health endpoint data (Rabinovitch et al., 2004; Rabinovitch, Strand and
Gelfand, 2006). Children aged 6–13 who attended the Kunsberg School at the National
Jewish Medical and Research Center (NJMRC) and had physician-diagnosed asthma were
studied over 3 consecutive winters. In the first winter (2002–2003), 57 schoolchildren
participated, 43 participated the next year and 45 children participated in the final year.
Endpoint measures include recording of daily asthma medication use and daily measurement
of level of lung function.

3. Results
3.1 PM2.5 Characterization

Data on PM2.5 mass concentration and an abbreviated set of speciated components from the
start of monitoring in July 2002 through December 2006 are available at this time. Table 1
shows descriptive data on 24-hour average concentrations of PM2.5, inorganic ions and bulk
carbon. These data, together with the 2003 supplemental metals data, were used to generate
the annual average PM2.5 chemical composition chart shown in Figure 2. In this figure, OC
has been converted to organic carbon mass by multiplying by a factor of 1.41 required for
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mass closure. This factor agrees well with the 1.2 – 1.4 range frequently reported in the
literature, originally proposed by White and Roberts (1977) and is within the range of 1.6 ±
0.2 reported for urban fresh aerosols (Turpin and Lim, 2001; Pang, Turpin and Gundel,
2006).

To assess the adequacy of our residential monitoring site in reflecting temporal patterns in
PM2.5 components across the Denver metropolitan area, PM2.5 component time series data
were examined from the only other site in Denver in which at least a subset of these data is
currently available. This monitoring site is an EPA Speciation Trends Network (STN) site
and is located in the most heavily-industrialized area in Denver (the Commerce City area in
northeast Denver) which also has a dense network of interstate highways. Of any area in
Denver, temporal variability in PM components in Commerce City might be anticipated to
be most different from that at our residential monitoring site. Because the STN analysis uses
a different ECOC analysis method than the DASH core site analysis, and these have well
documented differences (Chow et al., 2004, 2005), conclusions regarding comparisons
between the two sites must be made guardedly. While correlations between PM components
over time at the Commerce City site and our residential site were relatively good (lowest
r=0.70), concentrations of all components were generally higher in Commerce City,
especially so for EC and OC (Figures 3 and 4). Also, the absolute differences in
concentrations for some components varied over time. For example, EC concentrations were
dramatically higher in the winter in Commerce City compared to those at our residential site,
but only modestly higher in other seasons (Figure 4).

3.2 Source Apportionment Model Assessment
To evaluate the performance of the PMF model using the synthetic data set, PMF modeled
estimates of factor contributions and profiles (Gpmf and Fpmf, respectively) were compared
with the known synthetic matrices, Gsyn and Fsyn. In all the model runs, PMF2 was run in
robust mode. Different numbers of factors and values of the rotational factor (called
FPEAK) were investigated to obtain an optimal solution based on inspection of the scaled
residuals and the rotational uncertainty matrix (ROTMAT) output by PMF. This approach is
described further in Brinkman et al. (2006). The optimum model was able to discern all nine
of the original input factors and was relatively insensitive to selection of FPEAK values
ranging from 0.0 to 0.4.

Table 2 lists the coefficient of determination (R2) between the synthetic and modeled factor
contributions, Gsyn and Gpmf, for a nine factor solution with an FPEAK value of zero. The
PMF source contributions correlated well for six of the nine sources, all with R2 values
greater than 0.79. The correlation was best for ammonium nitrate, wood combustion and
vegetative debris (all with R2 greater than 0.98). The worst correlation was for meat cooking
(R2 = 0.14). This is a result of a relatively high detection limit for cholesterol, the primary
organic marker for meat cooking. Gasoline exhaust and natural gas combustion only
correlated marginally well with R2 around 0.5. Table 2 also lists the normalized mean bias
(NMB) for the contributions of each of the k sources defined by:

Equation 7

In Equation 7, gsyn and gpmf are the individual components of factor contribution matrices
Gsyn and Gpmf defined above.
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Source contributions estimated by PMF matched those used to develop the synthetic data for
paved road dust, ammonium sulfate and diesel exhaust. PMF overestimated source
contributions for ammonium nitrate, natural gas combustion, vegetative debris, wood
combustion, and meat cooking, and underestimated source contributions for gasoline vehicle
exhaust.

4. Discussion
The DASH study was designed primarily to allow investigation of the effect of short-term
variation in ambient source contributions of PM2.5 on several health endpoints. To this end,
daily concentrations of an array of PM2.5 components are being measured at a centrally
located residential site chosen to be distant from large emission sources. A concerted effort
is made to measure a large number of organic components, with a commensurate lesser
effort made to measure trace metal components. This detailed PM2.5 characterization
provides the raw data for source apportionment and should provide sufficient information to
resolve multiple source types. A multivariate, receptor-based approach (PMF) was chosen
for the daily source apportionment and a novel method was developed to estimate
uncertainties based on a bootstrap approach (Hemann et al., 2008).

The ability to identify PM2.5 source contributions depends critically on the PM2.5
components that make up the daily multivariate measurement. The characterization of PM2.5
in this study is more detailed than has previously been carried out for this purpose. The more
fully PM2.5 is characterized (i.e., the more source tracer compounds that are quantified), the
more likely PMF will be able to identify unique factors that are interpretable as individual
pollution sources. The synthetic data exercise demonstrated that PMF could discern the
sources of interest using realistic estimates of source variability and profiles, though not all
source contributions were accurately estimated. The sources exhibiting the most bias (based
on the normalized mean bias estimates in Table 2) suffered from either poor detection limits
for important tracer species (e.g., meat cooking identified by the fatty acids listed in Table
S2) or highly correlated source contributions (e.g., ammonium nitrate and wood combustion,
R=0.82). This exercise motivated us to improve detection limits and incorporate more
organic molecular marker compounds, thereby providing additional information to assist
PMF in distinguishing different, highly correlated sources. Table S1 in the online
supplementary data includes the expanded list of species currently being quantified.

The synthetic data exercise also allowed us to compare our chemical speciation scenario
which included organic markers with other scenarios that lacked these compounds.
Replacing the organic markers with trace metals did not provide sufficient information for
PMF to successfully pick out all nine of the original factors, often combining several of the
important sources into one factor. The STN typically generates speciated PM2.5 data for
only one out of every three or six days and includes trace metals, but no organic markers.
Data from the DASH study therefore have distinct advantages over existing STN data for
longitudinal studies of daily health endpoints, both in regards to the frequency of PM2.5
speciation measurements and the array of species identified.

Because source apportionment models are complex and subject to user discretion, critical
evaluation of the results is important. Each of the PMF model source contributions will be
scrutinized to be sure they match hypothesized temporal and spatial expectations. For
example, we expect a diesel vehicle source contribution on average to drop on Saturday and
Sunday relative to the rest of the week reflecting the reduced vehicle miles traveled on
weekends (Chinkin et al., 2003; Dreher and Harley, 1998). We also expect a wood
combustion source contribution to increase during the winter months from residential wood
burning and possibly to reveal episodic spikes in the warmer months due to wildfire activity
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and prescribed burns. Finally, simple wind trajectory analyses using meteorological data
from a nearby monitoring station will be helpful in validating potential point sources
identified by PMF.

The time series of PM2.5 source concentrations at our residential monitoring site needs to be
correlated with time series of population exposures to these emission sources. The ability of
a single monitoring site to adequately reflect the time series of PM2.5 components and
sources for the Denver population might be questioned. Based on limited data on PM2.5
mass concentrations from monitoring sites in Denver available at the planning stage of the
study, it appeared that the PM2.5 time series were reasonably homogeneous over space in
Denver. Recent findings from studies in other cities in which PM components have been
measured at multiple sites over time have indicated that this may not be true for PM2.5
components (Marmur et al., 2006; Ito, Xue and Thurston, 2004; Kim et al., 2005). Also,
examination of more recent concurrent PM2.5 component time series data from the only
other speciation site in Denver in which at least a subset of components is available indicates
that there may be substantial spatial-temporal variability in PM2.5 components.

It is possible that spatial variability in PM2.5 component time series will bias the health
effect estimates. A simple offset of concentration level from site to site, with differences in
concentrations remaining constant over time and the shape of the time series preserved over
space, does not result in bias in time series health effect estimates (Zeger et al., 2000).
However, a difference in the shape of the time series can result in bias. In the final year of
the study, we are planning a limited and focused PM2.5 monitoring campaign in the Denver
area to allow an assessment of spatial-temporal variability of short-term concentrations of
the PM2.5 components and the source concentrations. Simulation studies are also planned to
provide insight into the degree of bias in the health effect estimates likely to be produced by
such variability.

Identifying adverse health impacts of specific emission sources has potential advantages
over identifying impacts associated with other measures of PM2.5, such as mass or
component concentrations. Emission sources are a main determinant of chemical
composition and other features of PM2.5. If these features in turn determine toxicity, then the
toxicity of the PM2.5 mix in a given setting is in large part determined by the relative
contribution of individual emission sources. Policies aimed at reducing exposure to specific
sources could then be considered as more focused and efficient alternatives to ameliorating
the adverse public health impacts of PM2.5 exposure than existing approaches that focus on
other PM2.5 metrics. Identifying especially toxic sources of PM2.5 may also provide insight
into features that confer toxicity. Caution should be exercised, however, given the potential
for bias in the source estimates generated from the factor analysis. The synthetic data
exercise carried out in this paper suggests that bias can be large if sources do not have well
characterized marker species or are highly correlated with other sources.

Another advantage of taking a source-oriented approach to specifying exposure to air
pollution is that specific source effects might in fact be generalizable. Many pollution
sources present in Denver, such as diesel, gasoline and natural gas combustion, residential
wood burning, and food cooking are common to many urban areas. While there is clearly
heterogeneity in single pollutant effects from city to city when using the traditional air
pollutant concentration approach to studying air pollution effects, as well as limited
generalizability of single city findings, it is not known whether such heterogeneity will be
present in estimated effects of pollution sources. Because a given urban area under study
does not experience pollution from all potential sources does not seriously undermine this
approach. Of course, if effects are due to synergistic interactions of source emissions, only
limited generalizations across cities would be possible. For this reason, it could be valuable
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to incorporate several cities into a unified sources-effects analysis. The lack of the needed
detailed daily monitoring data, such as those being obtained in this study, currently limits
the feasibility of a multi-city approach.

The initial array of health endpoints being examined in the DASH study should provide
insight into the range of health effects associated with PM2.5 source exposures. Many other
possible endpoints could be coupled with the existing source exposure characterization to
greatly enhance the value of the original study. The air monitoring, chemical speciation and
source apportionment carried out in DASH can therefore be a valuable resource for further
epidemiological investigation into health effects of PM2.5 source emissions.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Shown is a map of the Denver metropolitan area, including the five counties included in the
DASH study and the locations of the residential monitoring site (star) and the STN site in
Commerce City (circle).
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Figure 2.
Average composition of PM2.5 incorporating 4.5 years of speciated measurements at the
DASH residential monitoring site. Organic carbon has been converted to organic carbon
mass by multiplying by a factor of 1.41 required for mass closure.
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Figure 3.
Correlation (r=Pearson correlation coefficient) between daily PM2.5 mass and component
concentrations at the northeast Denver STN site in Commerce City and the DASH
residential site on Palmer Elementary School from 07/01/02 through 12/31/05.
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Figure 4.
Daily 24-hour average PM2.5 mass and component concentrations (μg/m3) at the northeast
Denver STN site in Commerce City (red circles) and the corresponding concentrations at the
DASH residential site on Palmer Elementary School (black triangles). The smooth curves
are loess smooths with windows widths of 0.1.
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